

VARITOSCAN-Clima

Valorizzazione delle colture da rinnovo in ambienti toscani in previsione dei futuri cambiamenti climatici

Michele Moretta - Alberto Masoni

Marco Mancini - Alessandro Calamai - Enrico Palchetti - Stefano Benedettelli - Simone Orlandini

Obiettivo

Individuare e fornire agli agricoltori colture da rinnovo (nuove specie o genotipi) adatte per essere introdotte nel classico sistema di rotazione toscano.

In particolare valutare varietà (ecotipi) di MIGLIO e MAIS per:

- produttività
- adattabilità all'ambiente agroclimatico
- valore nutrizionale/salutistico

Partner

7 partner diretti

P1) IL CERRETO - Azienda Agricola Biologica

P2) GARFAGNANA COOP – Alta valle del serchio

P3) Azienda Agricola Vecchioni Giovanna

P4) FCS - Fondazione Clima e Sostenibilità

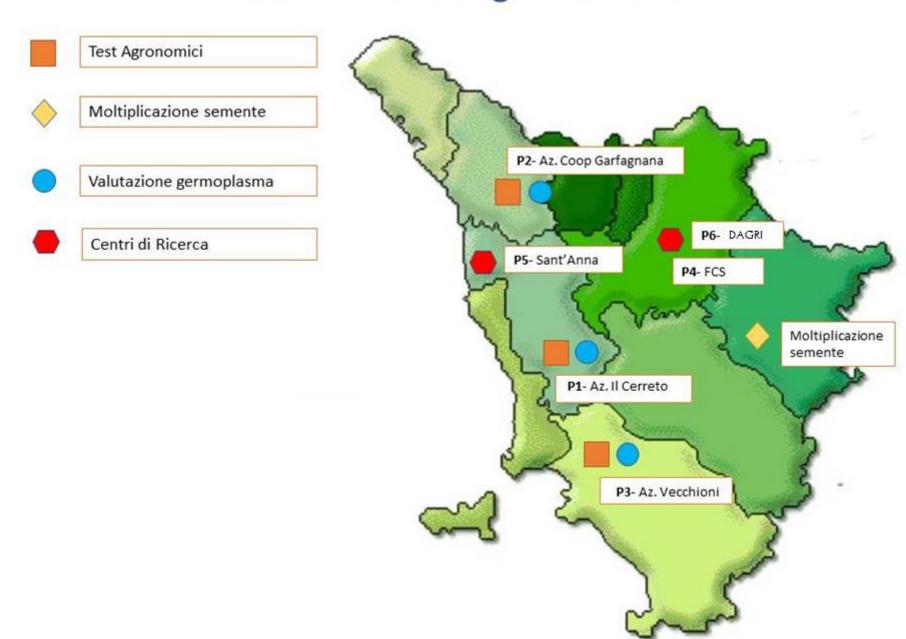
P5) Scuola Superiore Sant'Anna

P6) DISPAA-Università degli Studi di Firenze

P7) ANCI TOSCANA

CAPOFILA

Sottomisura 16.2


Sottomisura 1.1 1.2 1.3

1 partner indiretto

Az. Agr. sperimentale Cesa (AR) - Regione Toscana

Localizzazione degli interventi

Esigenze ambientali del MIGLIO

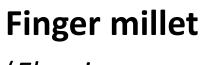
- Origine Asia centrale
- Ciclo di coltivazione primaverile-estivo
- Germinazione T minima > 13 °C e T ottimale > 20 °C
- Lunghezza ciclo colturale corto: massimo 70-80 giorni
- Coltura rustica, buona capacità di adattamento a terreni poveri e marginali
- Bassa richiesta idrica

Classificazione del MIGLIO

Pearl millet

(Pennisetum glaucum)

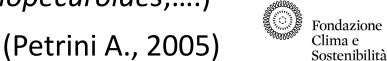
oltre il 50% produzione mondiale


30% produzione mondiale →

(Panicum miliaceum)

Panic-grass

(Setaria italica)



(Eleusine coracana)

10% produzione mondiale

10% differenti specie di miglio definite minori (es: *P. purpureum, P. alopecuroides,....*)

Classificazione del MIGLIO

I differenti ecotipi si distinguono in base al colore

P. miliaceum album (bianco)

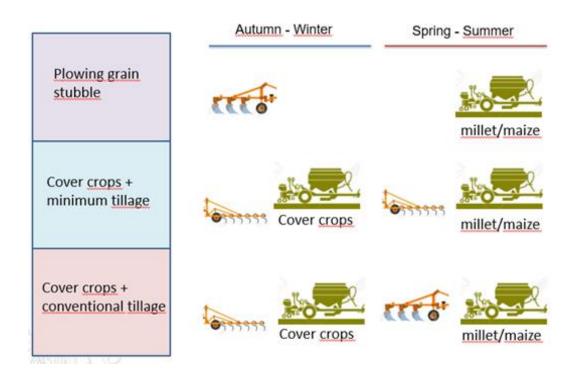
P. miliaceum luteum (giallo)-

P. miliaceum nigrum (nero)-

P. miliaceum bicolor (bicolore)

Prove agronomiche

- Prove agronomiche di coltivazione
 - Az. Agr. Il Cerreto → ambiente collinare


 - Az. Agr. Vecchioni → ambiente costiero
- Caratterizzazione agroclimatica e interazione genotipo-ambiente
- Caratterizzazione genetica
- Valutazione della qualità nutrizionale

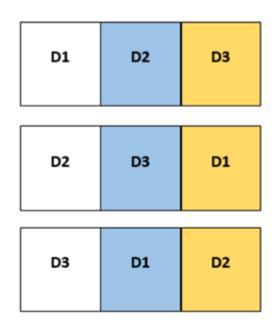
Prove agronomiche per coltivazione a basso impatto

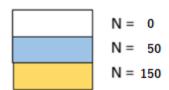
- Sovescio → trinciatura → minima lavorazione → semina
- Sovescio → trinciatura → aratura → semina
- Aratura \rightarrow semina

Fondazione Clima e Sostenibilità

Prove agronomiche per coltivazione a basso impatto MIGLIO (var. Sunrise)

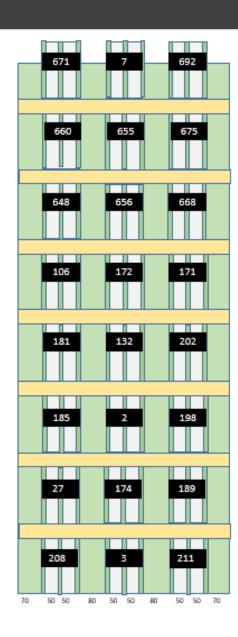
• Sovescio → trinciatura → minima lavorazione → semina → 14,93 q/ha


Sovescio → trinciatura → aratura → semina → 14,99 q/ha


• Aratura \rightarrow semina \rightarrow 14,84 q/ha

Miglio: prova densità semina e fertilizzazione (var.sunrise)

D1	SEMI/M2 = 55
D2	SEMI/M2 = 111
D3	SEMI/M2 = 222



Effects of plant density and nitrogen fertilization on proso millet plants (*Panicum miliaceum* L.) grown under Mediterranean pedoclimatic conditions

	Morphological data					Productive data				Phenological data		
	Plant height	Basal tiller	Seed yield per	1000 seed	Peduncle	Inflorescence	Grain	Total	Harvest	Protein	Days to	Days to
	(cm)	(n)	plant (g)	weight (g)	length (mm)	length (mm)	yield (kg)	biomass	Index	(%)	flowering	maturity
								(kg)				
Year												
2018	89.35b	5.20b	206.87b	6.46	105.85b	215.78b	2847b	10565b	0.26	9.77b	62.70a	99.1
2019	92.03a	5.60a	220.86a	6.85	107.71a	221.67a	3147a	11525a	0.27	10.26a	55.20b	99.4
LSD (0,05)	**	*	**	n. s	* *	**	**	**	n. s	*	**	n. s
Plant density												
D55	91.73a	6.45a	236.55a	6.77	110.04a	230.29a	2758c	10559b	0.26c	10.43a	61.10a	102.30a
D111	90. 19b	4.91b	206.73b	6.67	107.31b	215.21b	3020b	11113ab	0.27b	9.81b	57.90b	98.80b
D222	90.13b	4.85b	198 .32c	6.49	102.98c	210.67c	3211a	11464a	0.28a	9.79b	56.30c	96.20c
LSD (0,05)	*	*	**	n. s	*	**	**	**	**	**	**	**
Nitrogen												
N0	87.06b	3.86c	193.32c	6.46	97.39b	207.89c	2705d	10668c	0.25c	9.78b	60.50a	101.20a
N50	88.32b	3.75c	205.33b	6.62	101.36b	215.06b	2896c	10655c	0.27b	10.03a	59.30a	98.50b
N100	92.67ab	6.67b	227.73a	6.71	112.50a	224.28a	3123b	11101b	0.27b	10.11a	57.10b	97.20b
N150	94.72a	7.34a	229.08a	6.78	115.86a	227.67a	3263a	11760a	0.28a	10.14a	55.90b	95.70c
LSD (0,05)	**	**	**	n. s	**	**	**	**	**	*	**	**
Plant density x												
Nitrogen	**	ns	**	ns	**	**	**	**	**	**	**	**

Prove di confronto varietale del MIGLIO

80 accessioni di miglio da valutare

- Valutazione della risposta all'*habitus* di crescita

- Definizione delle varietà più promettenti

Lista delle accessioni di MIGLIO

Plant ID	Plant Name	Ordain	Continent
Ames 32316	GE.2013-28	Origin	
		Georgia	East Europe
PI 649372	Index Seminum 295	France, Bas-Rhin	West Europe
Ames 11641	I.Pm. 630	India	South Asia
Ames 11674	I.Pm. 669	India	South Asia
Ames 11678	I.Pm. 673	India	South Asia
PI 170586	KUMDARI BEYAZ	Turkey, Aydin	West Asia
PI 171727	DARI	Turkey, Bolu	West Asia
PI 173749	KIRMIZIDARI	Turkey	West Asia
PI 202294	IPM 1036	Argentina	South America
PI 202295	IPM 686	Argentina	South America
PI 204598	IPM 1038	Turkey	West Asia
PI 207663	MOROCCO	Japan	Southeast Asia
PI 220393	ARZEN	Afghanistan	West Asia
PI 220536	ARZAN	Afghanistan	West Asia
PI 220812	GAL	Afghanistan	West Asia
PI 223791	TAREQ; ARZAN	Afghanistan	West Asia
PI 227245	ARZAN	Iran	West Asia
PI 232929	LOVASZPATONAI PIROS	Hungary	Central Europe
PI 251388	IPM 1091-3	Iran	West Asia
PI 251389	IPM 1092	Iran	West Asia
PI 251403	ARZAN	Iran	West Asia
PI 251406	ARZAN	Iran	West Asia
PI 253789	IPM 1102	Iraq	West Asia
PI 253790	IPM 1103	Iraq	West Asia
PI 269954	NA	Pakistan	South Asia
PI 290726	IPM 1128	United Kingdom, England	West Europe
PI 291363	USSR	China	Southeast Asia
PI 291364	USSR	China	Southeast Asia
PI 296376	CROWN	Canada	North America
PI 346933	NA	Soviet Union, Former	East Europe
PI 346934	PODOLIAN 24/273	Ukraine	East Europe
PI 346937	TLICEVSKOJE	Soviet Union, Former	East Europe
PI 346939	URAL	Kazakhstan	Central Asia
PI 346941	KHARKOV 25	Ukraine	East Europe
PI 346943	NA	Ukraine	East Europe
PI 365840	NA	Australia, Austr. Capital Terr.	Oceania
PI 365842	NA	Australia, Austr. Capital Terr.	Oceania
PI 367683	WHITE FRENCH STRN. 8567-7	Australia, Austr. Capital Terr.	Oceania
PI 367684	WHITE FRENCH COMMERCIAL	Australia, Austr. Capital Terr.	Oceania
PI 427247	NA	Nepal	South Asia
PI 427248	NA	Nepal	South Asia
PI 427250	NA	Nepal	South Asia
PI 433381	Vishenutu	Taiwan	Southeast Asia
11 TJJJ01	v isiiciiutu	1 al W all	Southeast Asia

Plant ID	Plant Name	Origin	Continent
PI 436622	Lung Shu no. 5	China	Southeast Asia
PI 436624	Lung Shu no. 14	China	Southeast Asia
PI 436625	Lung Shu no. 16	China	Southeast Asia
PI 442533	NA	Belgium	West Europe
PI 476399	Raoluoga	Soviet Union, Former	East Europe
PI 516181	MINERVA	Romania	East Europe
PI 517016	GR 656	Morocco	North Africa
PI 517017	GR 658	Morocco, Ouarzazate	North Africa
PI 517018	GR 664	Morocco	North Africa
PI 517019	GR 665	Morocco, Ouarzazate	North Africa
PI 531399	BOLGAR 161	Bulgaria	East Europe
PI 531401	CSASZARRETI 6	Hungary	Central Europe
PI 531402	DOMACE BIELE	Czechoslovakia	Central Europe
PI 531403	DUNAKILITI "A"	Hungary	Central Europe
PI 531406	HANACKE MANA	Czechoslovakia	Central Europe
PI 531407	HARKOVSKOE 2	Germany	West Europe
PI 531413	VESZELOPODOLJANSZKOE 403	Germany	West Europe
PI 531416	MALCALTOR "A"	Hungary	Central Europe
PI 531419	PROSOS	Kenya	Eastern Africa
PI 531421	SARATOVSKOE 953	Soviet Union, Former	East Europe
PI 531422	SARATOVSKOE 953	Soviet Union, Former	East Europe
PI 531423	STRELECKIE BRUNATE	Poland	Central Europe
PI 531427	TOJDENSKOE 215	Soviet Union, Former	East Europe
PI 531430	VESZELOPODOLJANSZKOE 403	Soviet Union, Former	East Europe
PI 536011	SUNUP	United States, Nebraska	Central America
PI 578073	EARLYBIRD	United States, Nebraska	Central America
PI 578074	HUNTSMAN	United States, Nebraska	Central America
PI 583347	SUNRISE	United States, Nebraska	Central America
PI 583348	NE1	United States, Nebraska	Central America
PI 633425	Horizon	United States, Nebraska	Central America
PI 649371	Index Seminum #568	Germany, Saxony	West Europe
PI 649376	Cheongsong 4	Korea, South	East Asia
PI 649377	Cheongwon 5	Korea, South	East Asia
PI 649379	Eumseong 5	Korea, South	East Asia
PI 649383	Panhandle	United States, Nebraska	Central America
PI 649384	Minco	United States, Minnesota	Central America
PI 662288	Ames 5819	China	Southeast Asia
11 002200	Ames 3017	Cinita	Soumeast Asia

Prove di confronto varietale del MIGLIO

valutazione 80 accessioni

		2018	2019			
Trait	Media	Range	h^2b	Media	Range	h ² b
Altezza pianta (cm)	67.48 b	25-104	0.85	69.82 a	33-111	0.86
Numero foglie	6.70 a	3-11	0.82	6.52 a	3-10	0.87
Numero accestimenti	3.9 a	2-6	0.83	3.7 a	2-6	0.82
Resa per pianta (g)	8.54 a	2.6-16.7	0.71	8.96 a	2.8-15.9	0.75
Resa ad ettaro (kg ha-1)	1708 b	842-2982	0.55	1832 a	891-3125	0.58
Biomassa secca Tot. (kg ha-1)	6001 b	2889-9664	0.53	6279 a	2767-10627	0.58
Harvest Index	0.28 b	0.25-0.33	0.58	0.30 a	0.27-0.35	0.59
Peso 100 semi (g)	0.56 a	0.35-0.71	0.73	0.54 a	0.32-0.71	0.77
GDD alla fioritura	740.8 b	581-891	0.77	743.3 a	592-899	0.79
Giorni alla maturazione	97.8 b	80-109	0.73	98.8 a	83-111	0.75

Articl

Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (*Panicum miliaceum* L.) under Mediterranean Pedoclimatic Conditions

Alessandro Calamai ¹, Alberto Masoni ^{1,2},*¹, Lorenzo Marini ¹, Matteo Dell'acqua ³, Paola Ganugi ¹, Sameh Boukail ³, Stefano Benedettelli ¹ and Enrico Palchetti ¹

- DAGRI, Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy; alessandro.calamai@unifi.it (A.C.); lo.marini@unifi.it (I.M.); paola ganugi@unifi.it (FG.); stefano.benedettelli@unifi.it (S.B.); enrico.palchetti@unifi.it (E.P.)
- Department of Biology, University of Florence, 50019 Florence, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; matteo.dellacqua@santannapisa.it (M.D.); sameh.boukail@santannapisa.it (S.B.)

Correspondence: alberto.masoni@unifi.it
Received: 27 October 2020; Accepted: 22 November 2020; Published: 24 November 2020

Etichette nutrizionali

MIGLIO	valore energetico	ceneri	proteine	carboidrati totali	zuccheri semplici	grassi	Na	fibra
ACCESSIONE	(Kcal/100g)	(%)	(%)	(%)	(%)	(%)	(mg/100g)	(%)
2	367	3,8	9,0	74,4	0,6	3,75	4,7	19,9
3	398	3,2	8,8	68,8	0,6	9,7	4,0	17,5
27	365	3,3	10,9	70,7	1,0	4,4	4,2	18,0
106	389	3,7	12,4	65,1	0,8	8,8	3,6	36,3
132	376	4,2	12,1	65,6	0,9	7,17	6,8	28,4
174	357	6,5	11,9	68,4	0,8	4	8,1	20,7
183	394	3,5	10,9	65,5	1,3	9,8	1,1	16,6
185	362	4,7	8,9	73,4	1,3	3,6	0,8	21,2
189	359	4,5	10,2	73,1	1,2	2,9	1,2	19,3
191	369	4,8	11,4	69,9	1,2	4,9	1,2	25,5
198	372	3,6	12,1	69,4	1,7	5,1	7,6	11,7
202	354	6,3	11,7	68,3	1,2	3,8	9,1	23,8
208	372	2,78	12,5	69,7	1,1	4,8	0,5	22,5
209	352	7,8	12,3	67,4	1,6	3,7	9,7	29,9
211	365	3,3	13,5	70,2	1,6	3,4	8,7	33,4
648	362	3,5	11,9	70,7	1,2	3,4	7,7	24,6
655	360	4,1	13,2	70,1	1,0	2,9	1,8	28,1
656	372	2,6	9,4	75,3	1,1	3,7	0,4	24,6
660	369	3,4	14,0	69,0	1,4	4,1	2,8	22,1
668	369	3,98	13,1	68,6	1,5	4,7	1,1	27,9
671	366	3,5	13,8	68,0	1,5	4,3	1,1	19,9
673	368	4,3	11,5	70,2	1,5	4,5	2,3	26,5
675	369	2,9	10,9	73,0	1,3	3,7	3,9	20
679	357	5,2	12,0	69,0	1,8	3,6	2,0	20,6
700	357	4,3	12,9	70,7	1,7	2,6	1,5	15,4
minimo	352	2,6	8,8	65,1	0,6	2,6	0,4	11,7
massimo	398	7,8	14,0	75,3	1,8	9,8	9,7	36,3
media	368	4,2	11,6	69,8	1,2	4,7	3,8	23,0

- Valutazione qualità nutraceutica: sulle migliori accessioni di miglio sono state valutate le caratteristiche qualitative:
- analisi elementare di macro e microelementi
- nutraceutiche (contenuto di polifenoli, digeribilità, attività anti-radicalica)
- Contenuto di fibre, carboidrati e % proteina

alto contenuto di fibre

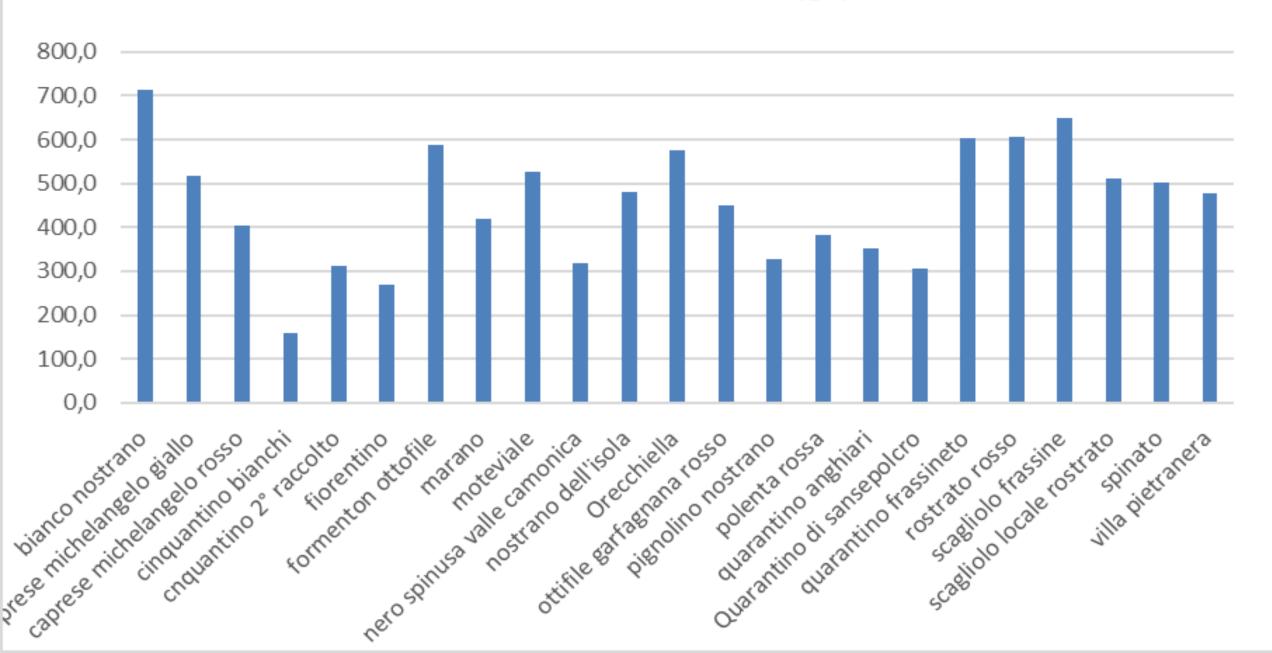
assenza di glutine

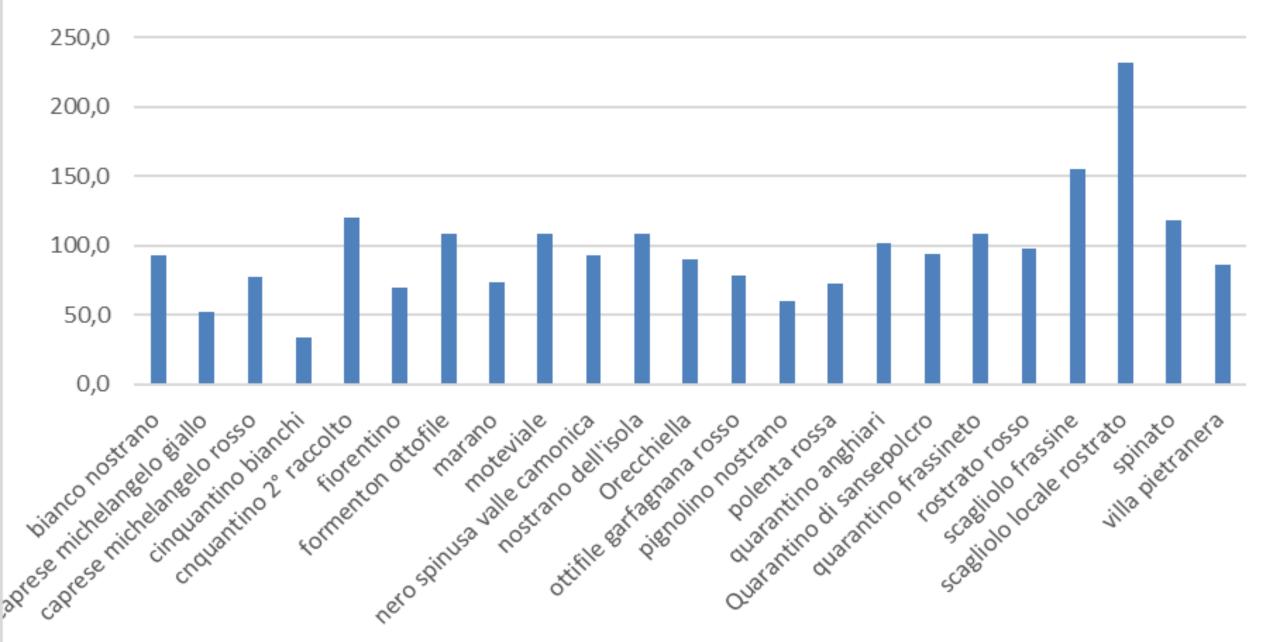
alto contenuto di carboidrati a basso contenuto glicemico

Prove agronomiche per coltivazione a basso impatto MAIS (var. ottofile)

• Sovescio \rightarrow trinciatura \rightarrow minima lavorazione \rightarrow semina \rightarrow 21,65 q/ha

Sovescio → trinciatura → aratura → semina → 21,75 q/ha


• Aratura \rightarrow semina \rightarrow 21,59 q/ha


Prova sperimentale Mais

- Confronto varietale di 24 accessioni in due blocchi completamente randomizzati
- Rilevamenti dei parametri morfologici (altezza, numero di ranghi, biomassa, precocità) dati produttivi (peso 1000 semi, peso specifico, t/ha) dati qualitativi

Peso fresco Biomassa (gr)

Peso granella /pianta (gr)

grazie per l'attenzione